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Abstract
Computer simulations of first-order phase transitions using ‘standard’ toroidal boundary
conditions are generally hampered by exponential slowing down. This is partly due to interface
formation, and partly due to shape transitions. The latter occur when droplets become large
such that they self-interact through the periodic boundaries. On a spherical simulation topology,
however, shape transitions are absent. We expect that by using an appropriate bias function,
exponential slowing down can be largely eliminated. In this work, these ideas are applied to the
two-dimensional Widom–Rowlinson mixture confined to the surface of a sphere. Indeed, on the
sphere, we find that the number of Monte Carlo steps needed to sample a first-order phase
transition does not increase exponentially with system size, but rather as a power law τ ∝ V α ,
with α ≈ 2.5, and V the system area. This is remarkably close to a random walk for which
αRW = 2. The benefit of this improved scaling behavior for biased sampling methods, such as
the Wang–Landau algorithm, is investigated in detail.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase transitions in colloidal suspensions are of profound
practical interest. Think, for instance, of phase separation in
colloid–polymer mixtures [1], or the freezing of colloidal hard
spheres at high densities [2]. For this reason, there is also
an enormous interest in the modeling of phase transitions by
means of computer simulation. The investigation of phase
transitions via computer simulation is not trivial, as there are
numerous hurdles to overcome. One obvious problem is the
issue of finite system size. Since computational resources
are limited, one always deals with finite numbers of particles,
whereas phase transitions are defined in the thermodynamic
limit. Hence, there is an obvious ‘gap’ to bridge, achieved in
practice using finite-size scaling1.

Another problem, which we focus on in the present paper,
concerns exponential slowing down, and affects simulations
of first-order phase transitions [4]. To illustrate the problem
we consider phase separation in the Widom–Rowlinson (WR)
mixture [5] in two dimensions (2D). In this model there are two

1 The literature on finite-size scaling is too extensive to be cited here; for a
recent review on the use of such methods in soft matter systems see [3].

particle species, A and B, each modeled as disks of diameter
a (in what follows a will be the unit of length). The only
interaction is a hard-core repulsion between A and B disks. As
is well known, the WR mixture phase separates provided the
fugacities zA and zB, of A and B particles, are high enough; due
to symmetry it holds that zA = zB ≡ z at the transition, which
we shall use throughout this work. When phase separation
occurs, one obtains a ‘vapor’ phase (dense in B species, and
lean in A species) and a ‘liquid’ phase (lean in B species,
and dense in A species). The particle density of A species
ρA = NA/V may be used as order parameter to distinguish
between the phases, since it assumes a low value in the vapor
phase, and a high value in the liquid. Here, NA is the number
of A particles in the system, and V the total system area (the
choice for A or B is arbitrary, of course). Despite its simplicity,
the 2D WR mixture is relevant for phase separation in cell
membranes, as the latter also constitute effectively 2D systems
(which even give rise to 2D Ising critical exponents [6]).

The standard approach to simulate the 2D WR mixture is
to perform a grand canonical Monte Carlo (MC) simulation
on a V = L × L square with periodic boundaries. Provided
the fugacity z significantly exceeds the critical value zcr, such
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Figure 1. Phase separation snapshots of the 2D WR mixture as obtained in grand canonical MC simulations using ‘standard’ toroidal
boundary conditions, i.e. a square with periodic boundaries. The snapshots were obtained at fugacity z = 2.5, which is well above the critical
fugacity zcr, and so the transition is strongly first order here. The light regions correspond to the vapor phase, dark regions to the liquid phase.
Starting in the vapor phase (a), a droplet of liquid nucleates (b). The droplet grows until the strip configuration is reached (c). Further
increasing the amount of liquid phase leads to a droplet of vapor (d), and finally this droplet vanishes, leading to the pure liquid phase (e).

that the transition is first order, phase separation proceeds as
shown in figure 1 [7, 8]. Starting in the vapor phase (a),
a nucleation event occurs, leading to the condensation of a
droplet of the liquid phase (b). The droplet grows until it
interacts with itself through the periodic boundaries, leading
to the strip configuration (c). In the strip configuration, vapor
and liquid coexist with each other, separated by two interfaces
that run perpendicular to one of the edges of the simulation
square as this minimizes the interfacial area. The approach to
the liquid proceeds via the formation of a vapor droplet (d),
which eventually vanishes, leading to a pure liquid phase (e).

The path connecting vapor and liquid thus passes the strip
configuration of figure 1(c). However, in a standard MC
simulation, where configurations appear proportional to their
Boltzmann weight, the strip configuration is extremely rare,
due to the large amount of interface that it contains. In 2D,
the total interface length in the strip configuration equals 2L,
corresponding to a free energy barrier �F = 2σ L, where σ

is the line tension. Hence, starting in one of the pure phase
(a) or (e), it typically takes τ ∼ exp(2σ L) MC steps to reach
the strip configuration. Since the ‘tunneling’ time τ increases
exponentially with the system size L, and hence explains the
phrase ‘exponential slowing down’, it is clear that the standard
MC method must be modified at a first-order phase transition
in order to remain efficient.

Such modifications have been made, and the state-of-the-
art is to not sample from the Boltzmann distribution, but from
a modified distribution, such that the ‘unfavorable’ interface
configurations of figures 1(b)–(d) are sampled just as often as
the ‘pure’ phases (a) and (e). Crucial to these methods is the
use of an order parameter, constructed such that

(1) it varies strictly monotonically along the path connecting
the phases, and

(2) is computationally fast to calculate.

Regarding the 2D WR mixture, a convenient order parameter
is the particle density ρA, which certainly fulfills criterion
(2). In the vapor phase ρA ≡ ρA,vap, in the liquid phase
ρA ≡ ρA,liq, while in the strip configuration ρA ≈ (ρA,vap +
ρA,liq)/2. The idea is to perform a MC simulation using
a biased energy EB = E0 + w(ρA), with E0 the original
energy of the system, and w(ρA) some a priori unknown
function of the order parameter ρA. Clearly, by tuning w(ρA)

appropriately, the probability of the interface configurations
can be artificially enhanced. The aim is to construct w(ρA)

such that the simulation performs a random walk in ρA.
Various methods can be used to construct w(ρA) in practice,
such as multicanonical sampling [4], (successive) umbrella
sampling [9, 10], and Wang–Landau sampling [11]. The
methods differ in details, but all provide a means to obtain
w(ρA).

Hence, using a suitable w(ρA), the free energy
barrier of interface formation is eliminated, the coexistence
configurations of figures 1(b)–(d) become accessible, and a
random walk in ρA will result (or so one hopes). In practice,
this is not the case [8] because, strictly speaking, ρA does not
fulfil criterion (1) and hence is not a suitable order parameter.
To see this, consider the case where half of the simulation
square is occupied with vapor, and the other half with liquid.
One way to arrange the phases is the strip configuration (c),
with the distance between the interfaces being L/2. However,
one could equally well arrange the phases in one of droplet
configurations (b) or (d), with the droplet radius being L/

√
2π .
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Figure 2. The analog of figure 1 but this time the simulation was performed on the surface of a sphere. In contrast to toroidal boundary
conditions, the transition from the vapor (a) to the liquid (e) involves only the nucleation of a droplet. Once such a droplet has formed, the
path from (b) to (d) does not involve any shape transitions; the images (b)–(d) only differ in the relative volume of the phases, not in their
geometric configuration.

Both ‘solutions’ yield the same order parameter ρA, but clearly
differ in topology. This is a problem because the transition
from the droplet to the strip configuration is a first-order
transition by itself, with a complicated order parameter not
simply related to ρA [8]. As with any first-order transition,
these so-called shape transitions also lead to exponential
slowing down. This means that simulations do not yield
random walk behavior in the order parameter, even when
w(ρA) is accurately known. Instead, most time is spend in
the pure phases (a) and (e), or in the strip configuration (c),
but transitions between the pure phases and the strip become
increasingly rare with increasing system size [8, 12]. This leads
to poor sampling statistics in practice.

In principle, these problems can probably be overcome
using a more sophisticated order parameter, one that also
distinguishes between shape. However, such order parameters
are not trivial to construct, and are likely to be computationally
expensive, which would violate criterion (2). An alternative
approach is to use a different simulation box topology, one in
which shape transitions are absent [7, 8]. Note that the droplet–
strip transition is a consequence of using a square simulation
box with periodic boundaries (topologically equivalent to a
torus). It is clear that on the surface of a sphere, the droplet–
strip transition would not occur. Instead, on a sphere, we
expect a first-order transition to proceed as shown in figure 2.
Starting in the vapor phase (a), we still expect a nucleation
event, leading to a droplet of the liquid phase (b). By increasing
ρA further, the droplet grows continuously (c) and (d) but there
are no shape transitions. There is still one nucleation event,
of course, as the vapor droplet (d) vanishes, leading to a pure
liquid phase (e). Hence, on the surface of a sphere, shape
transitions are absent, and by using an accurate bias function
w(ρA) one should achieve behavior more closely resembling
a random walk in ρA. In fact, any remaining slowing down
is due to nucleation, i.e. of actual physics taking place, and
should prove rewarding to study further.

The primary aim of this paper is to investigate if
exponential slowing down at first-order transitions is indeed
eliminated on a spherical topology. The idea of doing so was

announced some time ago [7], but as far as we know, such
simulations have not been performed to date. In fact, we are
only aware of [8], which considers a 2D Ising model on the
surface of a cube. The latter only crudely approximates a
sphere, but already the barriers arising from shape transitions
were seen to soften. Of course, being a lattice model, the
extension to a spherical topology is not feasible in the Ising
case. In contrast, for the 2D WR mixture, which is entirely
off-lattice, the extension to a spherical topology poses no
fundamental objections.

The outline of this paper is as follows. We first describe
the grand canonical MC method in the presence of a bias
function, and we provide some implementation details as to
how this method can be efficiently implemented on the surface
of a sphere. Next, we perform a number of cross-checks, to
demonstrate that toroidal and spherical simulation topologies
are consistent with each other in the thermodynamic limit.
We then turn to our main result, and show that at first-order
phase transitions, exponential slowing down on the sphere is
largely eliminated. Finally, we discuss how this improved
performance benefits a number of sampling algorithms, in
particular the Wang–Landau algorithm. We end with some
concluding remarks in section 4.

2. Methods

2.1. Grand canonical Monte Carlo

We simulate the 2D WR mixture in the grand canonical (GC)
ensemble using a bias function w(NA), i.e. defined on the
number of A particles. The WR mixture was defined in
section 1; here we only explain the GC simulation method.
In the GC ensemble, the fugacity z and the system area V
are fixed, while the number of particles fluctuates. Phase
separation is studied using the order parameter distribution
PV (NA|z), defined as the probability to observe a system
containing NA particles of type A. We emphasize that
PV (NA|z) depends on the imposed fugacity z, the system area
V , and on the simulation box topology (here: toroidal or
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spherical). The basic MC steps used to sample the distribution
are insertions and removals of single particles. At each step,
the simulation attempts with equal probability one of the four
following moves:

(1) insertion of one A particle at a random location,
(2) removal of one randomly selected A particle,
(3) insertion of one B particle at a random location,
(4) removal of one randomly selected B particle.

If the insertion attempts lead to forbidden overlaps, they are
rejected. Otherwise, the moves are accepted with probabilities

pins,A = min

[
1,

zV

NA + 1
ew(NA+1)−w(NA)

]
, (1)

prem,A = min

[
1,

NA

zV
ew(NA−1)−w(NA)

]
, (2)

pins,B = min

[
1,

zV

NB + 1

]
, (3)

prem,B = min

[
1,

NB

zV

]
. (4)

In the above, NA (NB) refers to the number of A (B) particles
in the system at the start of the move. Note the presence of the
bias function w(NA) in moves involving A particles. As was
explained in section 1, the bias function is needed to overcome
the free energy barrier of interface formation.

2.2. Implementation

The most CPU-consuming steps are particle insertions, since
here one needs to check for overlap with particles of the
opposite species. We now discuss how these checks can be
performed efficiently on the surface of a sphere. To simulate
a total area V , the sphere radius must be R = √

V/4π . The
position of each particle on the sphere is stored using a 3D
vector �r = (x, y, z) with |�r | = R. This means carrying around
a third coordinate but allows to eliminate time-consuming
trigonometric functions. First note that the on-sphere distance
d between two particles i and j is the length of the shortest path
over the sphere. This path lies on a great circle, i.e. a circle with
radius R. Hence, d = Rθ , where cos θ = (�ri · �r j)/R2. Unlike
particles i and j overlap when d < a, with a the particle
diameter or, equivalently, whenever

�ri · �r j > R2 cos(a/R), (5)

where the right-hand side is a constant, which needs to be
evaluated only once at the start of the simulation. Hence, to
check for overlap, only the computationally cheap term �ri · �r j

is needed but no trigonometric functions.
The second optimization concerns the implementation of

link-cell neighbor lists [13] on the sphere. To this end, the
sphere (of radius R) is ‘embedded’ in a 3D cube of edge 2R.
The cube itself is partitioned in n × n × n equally sized sub-
cubes, with n = 2R/a rounded down to the nearest integer.
Since it holds that

d � |�ri − �r j |, (6)

Figure 3. Order parameter distribution PV (NA|z) for the 2D WR
mixture obtained at fugacity z = 2.5 using toroidal (dashed line) and
spherical (solid line) simulation topologies. Note the logarithmic
scale. The system area equals V = 1600 in both cases. Due to the
high value of z, the vapor peak on the left is squeezed to the edge.
Also indicated are the free energy barriers �Ft and �Fs, which can
be used to obtain the line tension σ .

with d the on-sphere distance between particles i and j , one
only needs to check for overlap with particles that are in
the same sub-cube, or in any of the neighboring sub-cubes
(including diagonal neighbors). Note that the number of
neighboring sub-cubes that needs to be checked is typically
less than the maximum of 33 − 1 = 26 possible neighbors,
since only sub-cubes actually intersecting with the surface of
the sphere have to be taken into account. In practice, only about
13–14 neighboring sub-cubes were counted in our simulations.

3. Results

3.1. Order parameter distribution and line tension

We begin our analysis by explicitly showing the order
parameter distribution PV (NA|z) as obtained using a toroidal
and spherical simulation topology. Figure 3 shows a typical
result for a fugacity z high above the critical fugacity zcr; the
system area V is the same in both cases. The distributions
reveal two peaks: the left peak corresponds to the pure
vapor phase, the right peak to the pure liquid, and from the
peak positions ρA,vap and ρA,liq can be read-off. Whenever
the simulation visits the peaks, a single homogeneous phase
is observed, i.e. resembling the snapshots of figures 1(a)
and (e) and 2(a) and (e). On the scale of the graph, the
peak positions between the toroidal and spherical topology
practically coincide. This is to be expected because the pure
phases do not contain any interfaces. Only in the region
between the peaks are differences between the two topologies
expected to appear.

For the toroidal topology, a pronounced flat region
between the peaks unfolds. This is where the system assumes
the strip configuration of figure 1(c). In this configuration,
an increase of the volume of either phase at the expense
of the other phase merely moves the interface but does not
change its form nor affect the bulk phases. Hence, the
free energy remains the same under such a change which is
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Figure 4. Variation of the line tension σ versus z as obtained using
toroidal (dashed line with squares) and spherical (solid line with
circles) simulation topologies. The data were obtained at fixed
system area V = 1600 in both cases, and so finite-size effects are not
accounted for.

the origin of the characteristic flat region in the probability
distributions of systems on a toroidal topology. Following
Binder [14], the average height �Ft of the peaks above the flat
region, measured in the logarithm of PV (NA|z), corresponds
to the free energy cost of interface formation. Since the total
amount of interface in the strip configuration equals 2L, one
immediately obtains the line tension

σ = �Ft/(2L) (toroidal topology), (7)

with L the edge of the simulation square. In contrast, using a
spherical topology, PV (NA|z) does not reveal any flat region.
The reason is that on the sphere, any change in the relative
volume of the phases inevitably creates or destroys interface.
The maximum amount of interface is generated when half the
sphere is occupied with vapor, and the other half with liquid,
i.e. conform figure 2(c). The interface length then equals 2π R,
and the analog of equation (7) becomes

σ = �Fs/(2π R) (spherical topology), (8)

with R the sphere radius, and �Fs the barrier height. The
estimates of the line tension as a function of the fugacity
are shown in figure 4 for both topologies using V = 1600.
In agreement with theoretical expectations, σ decreases with
decreasing z, and at zcr it vanishes. However, σ obtained on the
sphere is systematically below that of the torus, the discrepancy
being around 5%. In principle, we only expect agreement in the
thermodynamic limit, and so a detailed investigation of finite-
size effects [15] is required to resolve this issue. In addition, σ

obtained on the torus corresponds to planar interfaces, whereas
the interfaces on the sphere are curved. Hence, there could be
curvature corrections, possibly involving Tolman’s length [16].

3.2. Locating the critical point

In the thermodynamic limit, phase transition properties should
not depend on the simulation topology. So as a test for

Figure 5. Determination of zcr via finite-size scaling using both
toroidal (squares) and spherical (circles) simulation topologies.
Plotted are the fugacities at which χ and Y ±

8 attain their extrema
versus 1/l , with l = √

V the lateral extension of the system; the lines
are linear fits. For systems of finite size, the results differ
significantly between the different topologies, but agree on the value
of zcr in the thermodynamic limit.

the validity of using a spherical topology, rather than the
more common toroidal one, we compare predictions for the
critical point. Simulating at fugacities around the critical
point, and using histogram reweighting [17], we verified that
in both cases the same value of the critical fugacity zcr is
obtained, as well as critical exponents consistent with 2D Ising
universality. Figure 5 shows the result of a finite-size scaling
study along the lines of [18]. For both topologies, we have
plotted the fugacities at which the susceptibility χ attains its
maximum versus 1/ l. Here, l = √

V denotes the ‘length’
of the system. Also shown are the fugacities at which the
generalized susceptibility Y ±

8 attains its global extrema, with
Y ±

8 defined in [18]. The lines are linear fits, which capture
the data well, consistent with the exact 2D Ising value ν = 1
of the correlation length critical exponent. Clearly, in finite
systems, the results between the two topologies differ, but
both extrapolate to a common value zcr = 1.717(2) in the
thermodynamic limit (the error reflects the scatter between
individual scaling results). Furthermore, in both topologies,
we find that the maximum value of the susceptibility increases
with the length of the system as χmax ∝ lγ /ν , with γ the
critical exponent of the susceptibility. We obtain γt ≈ 1.754
and γs ≈ 1.743, for the toroidal and spherical topology,
respectively, which both compare well to the exact 2D Ising
value γ = 7/4. Our estimate of zcr for the 2D WR mixture is
close to the one reported in [19], but upon careful inspection
does underestimate it (by about 0.5%). Interestingly, one of us
(RV) has experienced a similar disagreement for the 3D WR
mixture as well [20]. The origin of the discrepancy is not clear.

3.3. The fate of exponential slowing down

We now come to the main result of this paper, where we
consider exponential slowing down at a first-order phase
transition. Our hope is that, by using a spherical topology,
exponential slowing down can be largely eliminated. To this
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Figure 6. Main result of this paper: shown is the number τ of MC
steps needed to traverse from ρA = 0 to 3.5 and back as a function of
the system area V in biased simulations using toroidal (dashed line)
and spherical (solid line) boundary conditions. Note the
double-logarithmic scale! The important result to take from this
figure is that τ increases strongly with V (presumably exponentially)
on the torus, but only weakly (power law) on the sphere. The data
were obtained for the 2D WR mixture at fugacity z = 2.5; the
exponent of the power law for the spherical topology equals α ≈ 2.5,
which is remarkably close to αRW = 2 of a true random walk.

end, we set the fugacity to z = 2.5 which is well above zcr, and
so the transition is strongly first order. We remind the reader
that our simulations use a bias function w(NA) to overcome
the free energy barrier of interface formation, and also that
w(NA) is a priori unknown. Hence, for a number of system
sizes V , accurate bias functions w(NA) were first obtained
using successive umbrella sampling [10], for both toroidal and
spherical topologies. Next, biased simulations were performed
using the (now known) bias functions, and the number of MC
steps τ needed to traverse from ρA = 0 to 3.5 and back was
measured; the reader can verify in figure 3 that this range is
sufficient to sample both the vapor and liquid peaks.

The resulting τ data are collected in figure 6. The most
striking feature of the plot is that for a toroidal topology τ

indeed increases faster than a power law with V . Following
the discussion in the Introduction, we attribute this slow down
to free energy barriers associated with the droplet–strip shape
transition, which are not overcome by the bias function w(NA).
The data for the spherical topology, in contrast, do not reveal
any exponential slow down for the system sizes considered
here but rather a power law increase; approximately τ ∼ V α ,
with α ≈ 2.5. This is still a slow down compared to a perfect
random walk, for which αRW = 2, but not an exponential one.
Possibly, the remaining slow down is due to nucleation events.
Comparing the values of τ between the two topologies, it is
striking that already for system area V = 1600, τ on a torus is
ten times that of τ on a sphere.

3.4. Wang–Landau sampling

Having shown that the tunneling time τ using a spherical
topology can be much smaller compared to that on a
torus, a natural next question is whether this improvement

Figure 7. Number of MC moves required to complete one WL
iteration, using a toroidal (vertical bars) and spherical (circles)
simulation topology, on double-logarithmic scales. Results are
shown for system areas V = 900, 1600, 2500 (bottom to top). Note
that during WL sampling the larger values of δ are sampled first. The
data were obtained for the 2D WR mixture at fugacity z = 2.5.

also increases the performance of the algorithms used to
construct w(NA). One such algorithm is Wang–Landau (WL)
sampling [11]. Here, the bias function is initially set to
w(NA) = 0, and one proceeds to simulate as explained in
section 2.1. Each time a state with NA particles of type
A is visited, the corresponding value of the bias function is
decreased by a modification term: W (NA) → W (NA) − δ.
This reflects the idea that the current number of A particles is
just being found a bit more probable than previously expected
and hence needs a smaller bias. One continues to simulate until
all particle numbers NA over the range of interest have been
visited sufficiently often2, which completes one WL iteration.
At this point, the modification term is reduced, say, δ → δ/2,
and the next iteration is started. By using a large modification
term at first, say δ = 1, one ensures that all states will
be visited in relatively short times. At later stages, when
δ is small, changes to the bias function become negligible,
and the algorithm is said to have converged. Clearly, for
the performance of this algorithm, it helps if the simulation
traverses the density range of interest as quickly as possible.
This is obviously related to the tunneling time τ , which is
significantly reduced on a spherical topology, and so we expect
an increased performance for WL sampling too.

To test the performance of WL sampling on toroidal
and spherical topologies, the bias function w(NA) was
measured independently 40 times using system sizes V =
900, 1600, 2500 (by independent we mean that each WL run
was started with its own unique stream of random numbers). In
figure 7, the average number of MC steps needed to complete
one WL iteration is plotted as a function of the modification
term δ. In the early stages, where δ is large, the number of
MC steps is effectively identical. In this regime δ is so large
that the simulations on the torus are still easily pushed through
the regime of the droplet–strip transition, and hence there is

2 In practice this is determined using a ‘flatness’ criterion, see for
example [28].
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Table 1. Relative accuracy of selected physical observables obtained
using WL sampling on spherical and toroidal topologies for several
system areas V . The ratios all exceed unity, implying that the
spherical topology is to be preferred. The data were obtained for the
2D WR mixture at fugacity z = 2.5.

V 〈ρA〉 m1 m2 m3 m4

900 1.42 1.69 1.69 3.44 1.21
1600 2.92 3.83 3.83 6.51 3.66
2500 2.67 3.32 3.32 4.70 7.80

no noticeable difference. However, at later stages, where δ is
small, the number of required MC steps is significantly less
on the sphere, as expected, since here the sphere simulations
benefit from the improved diffusion behavior demonstrated in
figure 6.

Hence, late-stage WL iterations indeed complete faster on
a spherical topology, compared to a toroidal one. Next, it
remains to be shown that actual physical observables are also
more accurately obtained. To this end, we consider the average
density of A particles 〈ρA〉, and the first four central moments

mn = 〈|ρA − 〈ρA〉|n〉. (9)

Note that 〈ρA〉 and mn are trivially obtained from the order
parameter distribution PV (NA|z), which in turn is related to the
bias function w(NA) = − log PV (NA|z). For each topology,
we thus have a set of 40 estimates per observable. Using the
jackknife method [21], one can derive the statistical error 

in each observable, and the ‘best’ topology is the one with the
smallest . In table 1, the ratio of errors t/s is shown for
each observable, with t (s) the error as obtained on the torus
(sphere). The point to take from the table is that the ratios all
exceed unity, meaning that the data from the spherical topology
are more reliable. In combination with the findings of figure 7,
we conclude that WL simulations on spherical topologies are
overall more efficient.

Finally, we demonstrate that the enhanced performance of
WL sampling on spherical topologies can indeed be attributed
to the absence of the droplet–strip shape transition. To this end,
we consider the difference

�w(NA) ≡ w(NA + 1) − w(NA) (10)

between adjacent weights. Again using the jackknife method,
we estimated the statistical error  in �w(NA) from the set
of 40 simulations for each topology. Plotted in figure 8 is
 versus ρA. The striking feature is that on the torus, 

displays two extra large peaks, which are completely absent
on the sphere. These extra peaks in the torus data reflect the
sampling difficulties arising from the droplet–strip transition.
Away from the droplet–strip transitions, both topologies yield
essentially the same statistical error, as expected. Note also
the excellent agreement between both topologies regarding the
peak on the far right of the graph: this peak reflects a sampling
problem arising from nucleation, which indeed should occur in
both topologies. In principle, a nucleation peak should also be
visible on the far left of the graph, but due to the high fugacity
used, this peak is probably squeezed onto the vertical axes.

2.521.510.50

0.001

0.002

Figure 8. Variation of the statistical error  in �w(NA) versus ρA,
as obtained in WL simulations on toroidal (dashed line) and spherical
(solid line) topologies. For clarity, intervals of 20 error estimates are
combined to a single average. The error bars on the toroidal data
represent jackknife errors for the average of this re-binning; error
bars for the spherical topology are omitted. The data were obtained
for the 2D WR mixture at fugacity z = 2.5 and system area
V = 2500.

Table 2. The analog of table 1 but this time using successive
umbrella sampling [10].

V 〈ρA〉 m1 m2 m3 m4

900 1.61 2.61 2.62 6.8 1.83
1600 3.47 6.34 6.34 14.6 2.67
2500 4.43 11 11.1 30.1 11.2

3.5. Successive umbrella sampling

Another algorithm that can be used to construct the bias
function w(NA) is successive umbrella sampling (SUS) [10].
When SUS is implemented on a spherical topology we also
observe an increase in performance. In table 2, we display
some typical benchmarks regarding the accuracy of a number
of physical observables. Compared to WL simulations, the
performance increase in SUS simulations appears to be even
more pronounced. A possible explanation may be that, unlike
in WL sampling, each state NA was simulated using the same
number of MC steps for both geometries.

4. Conclusions

In conclusion, we have shown that the droplet–strip transition,
which is inherent to toroidal systems undergoing a first-
order phase transition, acts as barrier making simulations of
large systems increasingly harder. For the 2D WR mixture
investigated here, the droplet–strip transition can be easily, and
at the cost of a constant fraction of CPU time, be eliminated
by simulating the system on the surface of a sphere. We have
shown that for WL sampling [11] and SUS [10], simulations
on the surface of a sphere yield better results. The droplet–strip
transition is a general feature, also in 3D, appearing at all first-
order phase transitions studied on toroidal topologies. Hence,
the use of a spherical topology is expected to be beneficial in a
great number of other systems also.

The 2D implementation sketched here should quite
straightforwardly extend to 3D [22], and to other (short-
ranged) interactions also; obvious candidates are the hard-
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core square-well fluid, the (cut-and-shifted) Lennard-Jones
fluid, and colloid–polymer mixtures. However, models in
which the pair potential is a more complicated function
of the distance may require the use of computationally
expensive trigonometric functions, which were successfully
circumvented in the present implementation. Even so, this
additional computational effort should be outbalanced by the
elimination of exponential slowing down, provided the systems
are large enough.

Some models may not be so easily transferable to the
sphere, in particular when particle orientation comes into play.
An example is the 2D Zwanzig model [23] of horizontally
or vertically aligned hard rods. While on the torus one can
uniquely speak of horizontal and vertical directions, this is
prevented by the intrinsic curvature on the sphere. Note also
that the advantage of using a spherical topology is to eliminate
exponential slowing down at first-order transitions. Around the
critical point, where the transition is continuous, we did not see
much advantage using the spherical topology.

A different application where the use of a spherical
topology may be beneficial is in the simulation of
droplets [24–26]. One problem of using a toroidal topology
is that the maximum size of the droplet that one can simulate
is limited to the point where the droplet–strip transition
takes place [26]. On a spherical topology, this problem
is circumvented. Finally, we would like to point out that
phase separation on the surface of a sphere is also realized
experimentally in giant vesicles [27]; confocal microscopy
images of the latter qualitatively resemble the simulation
snapshots of figure 2.
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